A Dynamic Storage Model For Assyrian Computer Text
Peter (Jasim) BetBasoo
Nineveh Software Corporation

off-print from

SyrCOM-95

Proceedings of the First International Forum On Syriac Computing
(In Association wit Syriac Symposium 1)

June 8, 1995
The Catholic University of America
Washington, D.C.

Edited by
George Anton Kiraz
University of Cambridge
(St. John's College)

Published by the Syriac Computing Institute

A Dynamic Storage Model For Assyrian Computer Text
Peter BetBasoo

A Dynamic Storage Model for Assyrian Computer Text

Peter Jasim
Nineveh Software Corporation

In this paper I shall propose a model of representing Assyrian text in computer
memory, and discuss proposed standards for an Assyrian keyboard and data interchange code.
I shall also discuss the recent developrments in the Unicode standard.

In his paper On the Design of an Assyrian Word Processing System (JAAS, Volume
V, No. 2), Sargon Hasso proposes what I shall term a Static Storage Model (SSM) for
representation of Assyrian text in a computer. The fundamental properties of SSM are:

A glyph object structure composed of a character and a diacritical mark is used to
represent a glyph (character+diacritical mark). A character requires 1 byte of storage, as
does a diacritical mark; the minimum storage for a glyph is, therefore, 2 bytes. The
glyph object structure can be visualized as follows

Character::Diacritical mark

A lookup table is used to render each glyph. This implies that all possible
combinations of characters and diacritical markings have been defined and placed in this
lookup table. 1t is for this reason that I call this the Static Storage Model.

In the Static Storage Model there is a many-to-one relationship between what is
meernally stored in the computer and what is rendered on an output device (such as a
monitor or printer). For example, the following

i
1s stored internally as 65::97 (glyph codes are defined in Appendix A). A computer would

use these codes to find the predefined glyph Alap+Zgapa in a lookup table. Each glyph
object will have a unique entry in the lookup table. Here is an example for the word 24.5

Giyph Output

66::98 EY
74::0 -
86::97 &
65::0 2

Zero indicates no diacritical mark. Eight bytes are used to represent this word, two of which
(the zeroes) are unused. It is important to realize that under SSM the computer has every
possible glyph predefined in the lookup table. For this reason, the computer cannot
represent any new combination of character and diacritical mark. Assuming there are 22
letters and abouty 20 diacritical marks, the lookup table would contain at least 22*20, or
440 glyphs. This assumes that a letier can have only one diacritical, which is not the case;
the actual size of the lookup table will, therefore, be larger.

Another limitation of SSM is that it cannot represent multiple diacritical marks on the
same character in an efficient way. For example, in the word 28Sex, Gamal has two

diacritical marks. The glyph object structure, however, can only store one. SSM fails in

81

A Dynamic Storage Model For Assyrian Computer Text
Peter BetBasoo

this case. This problem can be solved by special processing, but this comes at the expense
of generality and complex algorithms.

In SSM the glyph object structure is a character and a diacritical mark. This leads to
unusual and undesirable editing operations. If a user presses the delete key, what should be
deleted, the character or the diacritical mark? Separate keys must be used to delete characters
and diaciritical marks.

To summarize, the Static Storage Model makes inefficient use of memory, and it
cannot handle characters with multiple diacritical marks. SSM also has a many-to-one
relationship between internal storage and external represeniation, which forces the
development of very complex rendering algorithms. In addition, many unusual and
undesirable effects arise, all becanse of a poorly designed data structure. There is a far
simpler alternative to SSM.,

A Dynamic Storage Madel
The Dynamic Storage Model (DSM) has the following fundamental properties:

Each letter or diacritical mark is stored as a unique, 1 byte code, separately and
independently of its neighbors.

Each character or diacritical mark has a location property, which tells the computer
where it should be placed: at the previous position, at the current position, or at the
next position.

Each character or diacritical mark has a cursor effect property, which telis the computer
how to move the cursor: backward, no motion, or forward.

A lookup wble, which is called a font, is defined to contain only atomic glyphs; i.e.,
individual characters and diacritical marks. The computer dynamically combines these to
produce various combinations of characters and diacritical marks. The font will contain,
at most, 223 glyphs.

The Dynamic Storage Model has a glyph object structure which is 1 byte in length.
Here is the previous example using DSM

Glyph Output

66 a
98 :
74 -
86 A
97 .
65 X

The following properties are true of DSM

1. DSM requires less storage space. Only six bytes are required to store this word, whereas
SSM requires eight bytes -- a 25% reduction in storage space.

2. Each glyph is stored consecutively in memory.

3. There is a one-to-one relationship between internal and external representation.

4. The diacritical marks Prakha and Zgapa have the following properties

82

A Dynamic Storage Model For Assyrian Computer Text
Peter BetBasoo

Location Property Cursor Effect
Ptakha previous position no motion
Zgapa previous position no motion
The remaining diacritical marks are similarly defined (Appendix E).

DSM handles multiple diacritical marks on the same letter in a natural and intuitive
way. For example, the word 1A{ ax, is stored as follows

Glyph Output

85 x
70 o
103 .

67 kY
103 .

110 -
76 Y
97)
65 3

DSM does not impose unusual editing operations on the user. For example, a delete
operation would delete the glyph currently pointed to, be it a character or a diacritical mark.
Hence, one key would be used for deletion, thus maintaining complete generality.

I have touched upon only a few of DSM’s properties. There are many technical issues
which arise in implementing DSM in a software system; it is beyond the scope of this
paper to discuss these n detail. Appendix E contains the DSM specification for Eastern
Assyrian. As can be seen from Appendix E, there is very little, aside from the script, that is
specific to Eastern Assyrian (and not to Western Assyrian or Estrangelo). DSM
transparently handles all three cases.

Four Essential Standards

Uniform standards are crucial for the development of hardware and software sysiems.
The two most basic standards are a standard keyboard layout and a standard data interchange
code, as well as a font standard and a contextual analysis standard. These four standards work
conjunctively; it is not possible to omit one without effecting the sysiem.

Data Interchange Code

A Data Interchange Code allows one computer to communicate with another. For
example, it would be undesirable to have one computer store the letter Alap as 635, and
another to store it as 100. Documents written on one machine would display garbage when
shown on the second. In addition, a standard code s necessary for proper lexical operations,
such as searching and sorting. Once again, I present the standard that was developed at the
First Ashurbanipal Library Computer Conference, but slightly modified for
improvement, This standard is called SACII, Standard Assyrian Code for
Information Interchange. Please refer to Appendix A,

83

A Dynamic Storage Model For Assyrian Computer Text
Peter BetBasoo

Keyboard Layout

It is important fo have a standard Assyrian keyboard layout so that, once having learned
the layout, a person can sit and use any Assyrian keyboard without retraining. The Assyrian
Standard Keyboard Layout (ASKL) was developed at the First Ashurbanipal Library
Computer Conference. The layout is based on a compuater analysis of the frequency of
use of each Assyrian letter. The most often used letters are placed near the center of the
keyboard, and the least used are placed to either side (refer 10 the Proceedings of the First
Ashurbanipal Library Computer Conference for more details). [have modified ASKL
slightly since the original standard was published, mainly to make it compatible with
modern operating systems (i.e., O8/2, Windows, Macintosh)}, and to remove the reliance on
spectal shift keys. ASKL is shown in Appendix B.

Contextual Analysis

It is not possible to have a practical keyboard ayout standard without contextual
analysis, since letters in the Assyrian alphabet change shape depending on their position in
a word. Appendix C specifies a standard method of contextual analysis.

Font Standard

Every Assyrian font, be it Eastern, Western, Estrangelo, or a new, modern creation,
must conform (o the font standard prescribed in Appendix D. The font standard is a corollary
of SACII, and it is stated explicitly for emphasis.

Application of the model

Appendix E contains a specification for the Eastern Assyrian font based on the concepts
developed in this paper. As can be seen, the combination of DSM and the proposed
standards provides a robust approach to the problem of computerizing the Assyrian
Ianguage.

Unicode and the Assyrian Language

There are two prevailing standards for information interchange codes, ASCII (American
Standard Code for Information Change), which is used by all personal computers, and
EBCDIC (Extended Binary Coded Data Interchange Code), which is used mainly by IBM
mainframe computers. Both ASCII and EBCDIC define 256 codes for data interchange. For
example, in ASCII the letter A is code 63, the letter B is code 66, and so on. Because
ASCII and EBCDIC are limited to 256 codes, they cannot handle a language that has more
than 256 characters (such as Japanese). Unicode was developed to solve this problem; it
provides 65,536 codes for use, which is enough to encode all of the world’s languages.
Unicode will, 1t 1s pleasing to know, support Assyrian as well. The author and Sargon
Hasso have submitted the Assyrian Unicode Standard to the Unicode Consortium, which has
accepied the Assyrian Standard and is in the process of ratifying it.

Conclusions

In this paper I have presented a powerful storage model for representing Assyrian text in
computer memory. I have also proposed standards for keyboard layout and data interchange
codes. It is important to understand that DSM, ASKL. and SACII are dialect independent,
i.e., they work with Eastern Assyrian, Western Assyrian {Serto), and Estrangelo. Indeed, if a
computer system implements DSM and the proposed standards, a user will be able to switch
from one font (Eastern, Western, or Estrangelo) 10 another at will, or to convert text written

84

A Dynamic Storage Model For Assyrian Computer Text
Peter BetBasoo

in one font to another with one hundred percent accuracy, or to type text in any font in a
uniform way.

References

Becker, Joseph. Arabic Word Processing. Communications of the ACM. July, 1987.
Becker, Joseph. Multilingual Word Processing. Scientific American. July, 1984,

DeKelaita, Joseph, Grammar of the Aramaic Language. Assyrian Church of the East Press.
1929

Hasso, Sargon. On the Design of an Assyrian Word Processor. Journal of the Assyrian
Academic Society, Volume 4, No. 2.

Jasim, Peter, ed. Proceedings of the First Ashurbanipal Library Computer Conference,
Topic: Assyrian Word Processing. Ashurbanipal Library Press, 1989,

Knuth, Donald. Art of computer Programming, Volume 1: Fundamental Algorithms.
Addison Wesley Publishing Company. 1973

Knuth, Donald. Art of computer Programming, Volume 2. Sorting and Searching, Addison
Wesley Publishing Company. 1973

Segal, I. B. Diacritical Points and the Accents in Syriac. Oxford University Press. 1953,

85

A Dynamic Storage Model For Assyrian Computer Text
Peter BetBasoo

Appendix A

SACII
Standard Assyrian Code for Information Interchange

This appendix lists the Standard Assyrian Code for Information Interchange (SACIHI),
from 010 255.

To insure that data can be transferred from one compuler t0 anolher, all vendors should
use SACH faithfully. SACII provides a broad, fundamental foundation upon which all

applications will be developed, such as dabase management, lexical analysis, spelling
checkers, and so forth.

SACII defines the leuers, symbols, and punctuation marks used in writing Assyrian,
This includes Eastern Assyrian, Western Assyrian (Serto), and Lstrangelo. As a mauer of
fact, no distinction is made between these three fonts a1 this level,

SACII fully supports contexival analysis. It reserves codes for ihe free, initial, middle,
and final forms of cach lcier.

In the following table cach letier is shown in Eastern, Estrangelo, and Western, in
that order.

Code Symbol Name

0-31 same us ASCH conwrol codes

32 Shopa specqa (2o.8% 2194x)

33 ! Neeshanga dpeogdana { Laax 093 Joax.1)
34 " Mamrana (Lad%e %)

35 # Minyana (13,.2%)

36 " Rahta L\, o3)

37 % fmmoona (Lagsel)

38 : ‘ascer { Aa o)

39 ' Mkhayiddana (133...50)

86

A Dynamic Storage Model For Assyrian Computer Text
Peter BetBasoo

40 { Qishia simmalaita (LA L Axm)
41) (ishta yameenaita (LaZadon LAxa)
42 : Mtakspana (La9BAaN)

43 + Mazyiddana (L33a4%0)

44 ‘ Neeshanga dnoohara (23003 Lost,a)
45 . Mapserana (115 wat0)

46 . Pasoga { luond)

47 / Palee‘ana (M..)

48 0 Seepar (55.-;:)

9 1 Kha (3)

50 2 fre (@35

51 3 Tata (LAAN)

52 4 Arba (LA=32)

53 5 Khamsha (LS.)

54 6 Ishta (LA)

55 7 Shawa (1A3x)

56 8 Tmanya (Loa% N)

51 9 Tish'a ({ 2AxX N)

58 ; Zawga (13 0y)

59 t Pasoqa kirya { Luaa loond)

60 < Soora min (o lialy)

61 = Dma (L)

62 > Goora min (o Lhod)

63 ¢ Neeshanga dshooala { 1AL oxXn lniv.s)
64 Napsa { 191)

65 LAY) Altap

66 a{Xd M) Be

61 A (& .\3 Gamumal

68 2 (% 3} Dalla

87

A Dynamic Storage Model For Assyrian Computer Text
Peter BetBasoo

69 01((1’) e

70 o { A o)} Wow
M y L) Zen
7 o (M 2g) Kheh

7 8 L) Ten
74 « {& J) Yood
75 ala 29) ke
% AAN) Lowne
77 WAL) Meem
78 3 (X 1) Noon

79 o (S) Simber

-

80 Ll Ny e
81 4a(8 9) p

82 e (e 5) Sade
83 a{d 0) gop
84 3(% 3) Resh

85 x {2) Sheen

86 A N) 7w

87 reserved for 23rd Mandaic letier
88 ’ Mzi'ana { 2a8..930)
89 : Ritma { L%9NA)

88

A Dynamic Storage Model For Assyrian Computer Text
Peter BetBasoo

90) Msha'lana (Lal\sxso)

a1 Samka { Iatsph)

92 ') Mnakhta (Ldxonate)

93 Rahta dkarte (01NBa s 25 013)

94 A Marmana (1a%5%)

93 . Serta dkhooyada (1 0u2 L.\vi.b)

96 i ?

97 i Zgapa (L812y Weslemn ?)

98 ' Piakha (Lo N4 Westem)

99 i Ziame psheege (Le.x3 J_tns.’)

100 . Zlame gishye { % 1%\, Western ?)

1M . Khwasa (L 2w Western -)

102) Rwakha ($s03 Western)

103 . Rwasa (33505 (L o235 in Eastemn and Wesiern)

104 ” Syame (o>)

105 R Rimkha (2593 below lctier)

106 - Qishta {LNxa below kcler)

107 . Mujleeyana (2...:....\._'\.':!) below letter)

108 . Serta Mhiera (1N 5o L&v 50 below leuer)

109 - Seria ‘elayia (LGS L\V.':a.b above lztier)

110] Talgana (l:jv&:':.so ol Lu:i.\v for silent or
accented letiers)

111 - ‘elaye (LA rests on either side of letier)

112 . Takhtaye (&a&doa & 1ests on either side of leuer)

113 &3 Kikhwa (1..‘:.?03)

114 + Stecwa (1‘....'::»_.5.!)

115 \ Mhagyana 2 (2 23.4 ol below letier)

116 p Mhagyana (12,3 015 below letter)

117 Gneezi { Lyai)

g Stoona goonya (Laagl 11850)

89

A Dynamic Storage Model For Assyrian Computer Text
Peter BetBasoo

119 ' Staona khtaya (Ln & L‘l'ﬁjvb)

120 Stoona ‘elaya (LAS 1383,0)

121 [Jeft bracket

122 i right bracket

123 unused

124 . Toopra simmalaya { L.A%0 1A ol)
125 . Toopra yameenaya (Lutaton. 15393v)

126 start renderiﬁg Sharee malkhamia (L A% Aw ~A)
127 stoprendering Makiee malkhamta (L NS\ .A:do)

128 - 150 rescrved for free forms
151-173 reserved for initial forms

174 - 196 reserved for final forms

197 - 255 font specific (such as ligatures)

Codes 101 and 103 require clarification. In Easiemn Assyrian » = e¢ (as in sheet), in
Western Assyrian it is the diacritical mark which is ee. As far as the computer is
concerned, « is just a letier with a dot under it, as arc o e .\ One key, therefore, serves
all these purposes. However, when one swilches 10 a Western font the . becomes a * .
and there no longer is a key for .» Which is still needed. Two codes must be defined,

therelore, to guarantee a one-10-one refationship between Eastern and Wesiern 1ext. Code

101 has the same meining in both Easiern and Western (ee); cade 103 always means a dot
under a leter, regardless of the font,

Codes 126 and 127 instruct the sofiware o contro) rendering. This is useful in cases
where a ligatare, such as A\, is not desired -- code 127 would force the sofiware to show

2N in this ease,

90

A Dynamic Storage Model For Assyrian Computer Text
Peter BetBasoo

Appendix B

ASKL
Assyrian Standard Keyboard Layout

This appendix lists the complete definition of 1he Assyrian Standard Keyboard Layout
(ASKL). ASKL was designed based on the freguency of use of each Agsyrian letier; the
most frequentdy used letters are placed in the center of the keyboard, and the letters least
frequently used are placed on either side.

The following specification assumnes contex(ual analysis (appendix C); keys are listed
from top row to bottom row, from left 1o right as seen on a QWERTY {(English) keyboard.
The foliowing key combinations are defined in SSKL.

QWERTY Key ASKL SACH Description

——— A A —m—————

| 1 49 Kha (3w)

2 2 50 Tre (\a3dN)

3 3 51 Tiaae (LANN)

4 4 52 Arb'a{ L3251)

5 5 53 Khamsha { 3250)

6 6 54 Ishea { LAx.)

7 7 55 Shaw'a (LA ax%.)

8 8 56 Tmanya { LassedN)

9 9 57 Tish'a (202 N)

0 0 48 Seepar (5..5.;;)

- 45 Mapserana { 133 z350)

" - 61 Dma (L3035)

Q K- 83 Qop

W ~ & [

E _ 101 Khwasa (2 yBen Wesiem)
"R 100 Ziame gishye (&Xm %Ny Wesiern ?)

91

w
.

<

L~ o 4 B L - A s - I o T)

™

T Z W o< O

A Dynamic Storage Model For Assyrian Computer Text

owv g gn J lat}

¥

il O

-

-

¥ b4 -

H w L

98

97
99

102
72
81
67
]2
79
69
68
70
74
78
65
77
76
59
39
71
73
75
86
66
84
85

46
47
33

36

Peter BetBasoo

Piakha (Lo N9 Western)

Zgapa ($9my Western)

Zame psheege (Laoxd L3al,y)

Rwakha (Lw0d Western)
Kheth

Pe

Gammal

Sade

Simket

Hea

Dalias

Wow

Yaod

Nogn

Allap

Mecm

Lanunad

Pasoqa kirya (LadA loomd)
Mkhayiddona (13 damed0)

Zen

Teth

Kap

Tow

Bet

Resh

Sheen

Neeshanqga dnochara (15019.1; loax.a)
Pasoga { Laomd)

Palee’ana (L‘LAAS)
Neeshanga dpoogdana (Lsanady loax,s)
Rahia { I3;013)

92

SHIFT 3
SHIFT 4
SHIFT 5
SHIFT 6

SHIFT 7
SHIFT 8

SHIFT 9
SHIFT 0
SHIFT .
SHIFT =
SHIFT Q
SHIFT W
SHIFTE

SHIFT R
SHIFT T
SHIFTY
SHIFT U
SHIFT]
SHIFT O
SHIFT P

SHIFT {
SHIFT]
SHIFT A

SHIFT §
SHIFT D
SHIFTF
SHIFT G
SHIFTH

SHIFT J
SHIFTK

A Dynamic Storage Model For Assyrian Computer Text

%

35
64
37
94

38
42

40
41
95
43
96
118
110

111
113
112
104

- 107

120
119

121
122
108

109
106
105
114
103

115
116

Peter BetBasoo

Minyana (11.a%)
Napsa (L043)
hnmoona (Laasel)
Marmana { 23%3%)

ascer (Bap X)
Mtakspana { La9.6A 0%)

Qishta simmaiaita (L&A LAxm)
Qishta yameenaita (.30, LAxs)
La.amp L3350 (connector)
Mazyiddana { 115950)

Stoona goonya (loaad h&lv.ea)
Talgana (133 oldse ol JJ-:I.L\O
for silent or accented letters)

‘elaye (LA)

Kikiwa (1asea)

Takhtaye (Lo NaniN)

Syame (L.)

Majleeyana (JJA:\.‘I: below letier)
Stoonu ‘elaya (2.5 L:aivb)
Stoona khtaya (Lo 0w L3 EL\V.Q:)
left bracket

rigit bracket

Serta khicta (1 0adon 28650 below leticr)

Serta ‘elayia (L NAL L\v:.ﬂ: above letter)
Qishta (LAxm below leter)

Rimkha (1303 below letter)

Sicewa { 2..4:».33:)

Rwasa ({5205 , 1wz in Eastern and
Westen)

Mhagyana 2 (3 118 ot% below leiter)
Mhagyana (L33 o1t below letter)

93

A Dynamic Storage Model For Assyrian Computer Text
Peter BetBasoo

SHIFT L 117 Gneezi (29+13)

SHIFT ; : 58 Zawga (13 0y)

SHIFT! " 34 Mamrana (233%21%)

SHIFT Z ' 88 Mzi'ana (Ladayte)

SHIFT X | 89 Ritma (LsAA)

SHIET C) % Msha'lana (2a\8x %)

SHIFT v i 91 Samka { Iasas)

SHIFT B . 92 Mnakhta (L0owzte)

SHIFT N

SHIETM 93 Rahta dkarie (@1N3AD 14 o3)
SHIFT , < 60 Soora min { o tiasy)

SHIFT . > 62 Goora min { r\: 159.\)

SHIFT / g 63 Neeshanqa dshooate (11 oxn luax.s)

(2 Y e | e e o |
N 0 e o s e e CIEJE
S e e ey sl A 3 [R |
N s | o o I N [R
|] [s e | S |

Shified Unshified
ASKL

Assyrian Standard Keyboard Layout

Nole the following cquivalences Eastern = Western
PET-TY : ¥
g 4
LEm lwh, »
Lpmm ES
Laad i
li.xd 1ady . none

94

A Dynamic Storage Model For Assyrian Computer Text
Peter BetBasoo

Appendix C
Contextual Analysis

Contextual Analysis is a development made possible by the computer, Very simply put,
Coniextoal Analysis is the ability of the computer to amomatically place the correct shape
of a letier into a word. For example, the word =.a» requires the following Contextual
Analysis:

space » . b » Keypressed
space » . & » Computer shows

Afer pressing space, the computer changes the final = in the word to am. Thus all a

lypist needs o type is one letter and the computer determines which shape of that teiler to

place in the word; this means that there would be only 22 letter keys on the Assyrian
kevhoard,

The foliowing is a basic algorithm for contextual anatysis. Note, this algerithm does not
include support for font-specific rendering (sce Appendix E).

Step 1 Getkeystrake
Is it 2 space?
Yes (a space was typed)
Beginning of the document?
No (not beginning of document)
Is previous character a letier?
Yos (it’s a leven
Is letter preceded by a space?
Yes (preceded by a space)
Put frec form
No {not preceded by a space)
Charge it w0 final form
Pul space (1ype the keysiroke)
iNo (something other than space was typed)
Is keysiroke a leder?
Yes
Beginning of the document or previous character a space?
Yes (beginning of document or space)
Put initial form
No (not beginning of document or space)
Put middle form
No
Type the keysiroke
Gotostep &

95

A Dynamic Storage Model For Assyrian Computer Text
Peter BetBasoo

Appendix D
Fon{ Standard

An Assyrian font must defing, at a minimum, the character set defined by SACII
(Appendix A, codes 32-196). While the shape of each character will differ from font to font,
the identity of the ¢haracter will remain the same.

Every Assyrian font must have four forms for each letter

1, fce ledler is not connected on either side.

2. initial letier is not connected on right side and is
cannected on the left side.

3. middle letter is connected on both sides.

4. final letter is connected on right side and is not

connecled on the left side,

Contextual Analysis will automatically place the correct form of the letter into the
word. SACII defines the following codes for each of these forms.

Form SACI code
Middle forms 65 - 87
Free forms 128 - 150
Initial forms 151173
Final forms 174 - 196

96

A Dynamic Storage Model For Assyrian Computer Text
Peter BetBasoo

Appendix E
DSM Specification for Eastern Assyrlan

This appendix uses the dynamic storage model and the standards developed in Appendix
A, Appendix C, and Appendix D to define the propemes of the Eastern Assyrian {ont. The
following propertics are delined

P1. The four shapes of each letier

P2. Connection property of each character
P3. Location property of cach character
P4, Cursor effect property of cach character
P3. Ligalures

P6. Rendering rules

Contextual analysis is font specific. Bastern Assyrian, Weslern Assyrian, and
Estrangelo require different rules of rendering and different ligatures (PS5 and P6). SACIE
supports contextual analysis by reserving codes for the frec, initial, middle, and final forms
of each fenter (P1 and P2). These codes provide a standard, font independent method of
rendering the three major Assyrian fonts. There are, however, differences in the fonis which
are not encoded in SACII, and which musi be handicd algorithmically. These rendering rules
(PS5 and P6) must be specified lor cach Assyrian font,

The following is ihe specification for Eastern Assyrian. Specifications for Western
Assyrian and Estrangelo remain Lo be developed.

The following table defines the first five properties, P1-P5, of Eastern Assyrian,

SACH Symbol Connections Location Property Cursor Effect
Left, Right Previous, Current Backward, None

None Next " Forward

32-35 N C F

36 * N P N

37) N C F

38 : N P N
~39-41 N C F

42 . N P N
43.63 N C F

&4 - N p N

65 1 R C F (middle forms, 65-87)
60 = RL C F

67 A RL C F

68 a R C F

69 a R C F

10 o R C F

71 + R C F

72 - RL C F

73 & RL C F

74 . RL C F

75 a RL C F

97

A Dynamic Storage Model For Assyrian Computer Text
Peter BetBasoo

76
17
78
79

RL
RL
RL
RL
80 RL
81 RL
82 R

83 RL
84
85
86

87 reserved
28 ’

89 '

90 ‘

a b+ p B Kk

v b o»
x

onNnooOoOOoOo0n
WM MMM ST M,

4
~

G2 .
93 .
95 .
96 t
7)
98

99

100

10

102
103

104

s A
06
W7
8 -

109 -
110 :
111
112
113
114
135

116
17
1ng
19
120 !

s"!—_/_‘,b.l
222 Z2Z2ZZZZEZL Z ZZ Z ZZ7Z ZZZZZZZZZ?ZZZZZZZ

TV ATYOOOO TY T OUYY VRT RN TR OOTYOYRYY
ZZZMZZ DM T M 2 2 222 ZZZZZZZZZTNMZZZZZZ

98

A Dynamic Storage Model For Assyrian Computer Text
Peter BetBasoo

121 {
122]
i23 unused
124

125

126-127
128

129
130
131
132
133
134
I35
136
137
138
139
140
141
142
143
144
145
146
147
148
149 N

150 reserved
151 1

{free forms, 128-150)

a v 3y >

hl’b)kb\l\ -

W Vg

bt

Z 2222 ZZZZ2ZZZZZZZLZZIZZLZZEZZZC AR ZZ
T TTTTYNNT VWV R DOV DUOTT OO
Z 22222 Z2Z2ZZ2ZZZZZ22Z22Z2222222Z22Z TT

-
-
prd

(initial forms,

151-173)
152 a

153
154
155
156
157
158
159
160
161
162
163
164

>

- o g B

*-

t

k ¥ b H
ol S S i ol o ol ol ol ol ol wnll o

TR TTY YT Y OY OV TRV
ZZZZ2ZZZZZZZZZZ

99

A Dynamic Storage Model For Assyrian Computer Text
Peter BetBasoo

165

-3 L P N
166 kY L P N
167 Y L P N
168 . L P N -
169 a L P N
170 3 L P N
171 = L P N
172 N L P N
173 reserved
174 : R P N {final forms, 174-196)
175 =3 R P N
176 A R P N
177 3 R | o N
178 o R P N
179 o R P N
180 ’ R P N
181 - R P N
182 o R P N
183 - R P N
184 R P N
185 3 R P N
186 n R P N
187 . R P N
188 L R P N
189 A R P N
150 4 R P N
1N c R P N
192 - R P N
193 5 R P N
194 x R P N
195 EN R P N
196 reserved
197 & ligawre for o
198 A higalure for s
199 ¥ ligalure for 1a
200 o ligawure for .,
208-255 unused

100

A Dynamic Storage Model For Assyrian Computer Text
Peter BetBasoo

Rendering rules (PS5, P6)

A word begins with a space and ends with a space, and cannot contain a space.

If a user inserts the suspend rendering code (127) before a character then that character is
printed as is, without special rendering -- the following rules would not apply.

Rules of rendering

R1 Left and right tails are attached to a letter that is preceded or followed by a space, or
both. Letters which accept a right tail are: w. & » = . Letters which accept a left tail are:

.:.._..._‘.v...:_\.b.:.bd._ﬂ.a:..

R2 If 2 appears at the end of a word and is not preceded by 2 or 3, then 2 is replaced by
L.

R3 If a appears at the end of a word and is preceded by a letter that does not connect on
its left, then a is replaced by .

R4 If a appears at the end of a word and is preceded by a letter that connects on its left,
then s is replaced by ¢.

R5 if s appears at the end of a word and is preceded by a letter that does not connect on
its left, then a is replaced by ...

R6 If 2 appears at the end of a word and is preceded by a letter that connects on its left,
then s is replaced by .

R7 If & appear at the end of a word then 2a are replaced by the ligature & or h,
depending on a default set by the user.

R8 If the word o. appears then it is replaced by the ligatare & .

101

